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Abstract Digit distributions are a popular tool for the detection of tax payers’
noncompliance and other fraud. In the early stage of digital analysis, Nigrini and
Mittermaier (A J Pract Theory 16(2):52–67, 1997) made use of Benford’s Law
(Benford in Am Philos Soc 78:551–572, 1938) as a natural reference distribution.
A justification of that hypothesis is only known for multiplicative sequences (Schatte
in J Inf Process Cyber EIK 24:443–455, 1988). In applications, most of the number
generating processes are of an additive nature and no single choice of ‘an universal
first-digit law’ seems to be plausible (Scott and Fasli in Benford’s law: an empirical
investigation and a novel explanation. CSM Technical Report 349, Department of
Computer Science, University of Essex, http://cswww.essex.ac.uk/technical-reports/
2001/CSM-349.pdf, 2001). In that situation, some practioneers (e.g. financial author-
ities) take recourse to a last digit analysis based on the hypothesis of a Laplace distri-
bution. We prove that last digits are approximately uniform for distributions with an
absolutely continuous distribution function. From a practical perspective, that result, of
course, is only moderately interesting. For that reason, we derive a result for ‘certain’
sums of lattice-variables as well. That justification is provided in terms of stationary
distributions.
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282 S. Dlugosz, U. Müller-Funk

1 Introduction

By fraud detection we mean techniques that help to single out suspects in a
non-technical way, i.e., to preclassify people on the basis of operative data (e.g.,
lists of prices, taxable amounts, …) without entering into a detailed technical inves-
tigation. The idea behind is that fraudsters might inadvertently violate some formal
aspects. One such aspect concerns the distribution of numbers. More precisely, those
techniques are not intended to identify a single irregular entry—as it is intended in
credit card fraud detection (Bolton and Hand 2002)—instead they are used to decide,
whether a whole dataset is contaminated by abnormal numbers. An approach to that
effects dates back to M. Nigrini who presumed that mantissas resp. first digits had to
obey Benford’s law and that a deviation from that law in a table of figures hints at an
abnormal behavior (Nigrini and Mittermaier 1997; Benford 1938).

Benford’s law, however, is closely related to the multiplicative structure of num-
bers and can only be supported in rather special cases (Schatte 1988). Most tables,
however, result from adding up costs, turnovers etc., and show a completely differ-
ent distribution of numbers. Some tax offices surmised that the last digits should
follow a uniform distribution, a hypothesis that could be checked with the help of
the χ2 test. The present paper supports that point of view. For some readers the
whole approach might be rather doubtful as it is completely based on formal pecu-
liarities. Alternative methods relying on pairwise comparisons, however, are hard
to implement in a feasible way and, moreover, are not legally accepted in some
countries (like Germany). For that reason, authorities are thrown back to the detec-
tion of deviations from some sort of ‘normality’—to be justified in a mathematical
way.

After introducing the necessary notation in Sect. 2, we present two theorems for
the uniform distribution of two different concepts of ‘last’ digits in Sect. 3. The first
theorem investigates more precisely the intuition of having a more and more uniformly
distributed ‘lower end’ of mantissas. In the second case, we look at numbers from the
integer range that are generated by some additive process like it is common in book-
keeping, especially for calculating transaction volumes. The other theorems are surely
the more interesting results for investigators. The proofs of theorems and lemmas is
deferred to Sect. 5.

2 Mantissas and last digits

Let 2 ≤ b ∈ N be a ‘base’ for the expansion of numbers and M = [1, b[ (‘set of man-
tissas’). The most prominent mantissa distribution, Benford’s law, is defined according
to

PH ([c, d[) = logb(d) − logb(c), 1 ≤ c < d < b.

All x ∈ R
>0 allow for a unique representation

x = m(x)be(x)
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The value of the last digit 283

with m(x) = m1(x) m2(x) m3(x) . . . ∈ M (‘mantissa’) and e(x) ∈ Z (‘exponent’).
For example, the number x = 12.345 in the usual decimal system (i.e., b = 10) has
the representation 1.2345 × 101.

The probability law on {1, . . . , b − 1} resp. {0, . . . , b − 1} induced by the kth digit
mk is called the kth Benford distribution, e.g.,

PH (m1(X) = j) = logb(1 + j−1)

PH (m2(X) = j) =
b−1∑

i=1

logb

(
1 + (ib + j)−1

)

PH (mk(X) = j) =
b−1∑

i1=1

b−1∑

i2=0

· · ·
b−1∑

ik−1=0

logb

(
1 + (i1bk−1 + · · · + ik−1b + j)−1

)
.

There are similar expressions for the common probabilities of two or more digits.

Remark M = [1, b[ is equipped with multiplication mod b and the quotient topol-
ogy. Those specifications turn M into a compact Abelian group with the normalized
Haar measure PH . Accordingly, PH can be perceived as some sort of ‘uniform distri-
bution’ as well.

Now, let X be a positive random variable expressing some real-world phenome-
non, e.g., the amount of yearly taxes paid by some person. Digit analysis for fraud
detection is based on specifications of the probability law L (mk(X)). Nigrini and
Mittermaier (1997) originally claimed that L (m1(X)) ‘typically’ obeys Benford’s
law. Various studies shed doubt on the universality of that distribution, in particular
with data sets related to additive—and not multiplicative operations (Scott and Fasli
2001; Bolton and Hand 2002). For that reason, we study the last digits and show that
they are approximatively uniformly distributed.

For these (quasi) integer-valued data, we need some further notation:1

d(b)
k (x) : N0 → B = {0, . . . , b − 1}

x �→
⌊ x

bk−1

⌋
−

⌊ x

bk

⌋

denote the kth last digit of a number x ∈ N, which consists of more than k digits, in
a number system with b different digits ranging from zero to b − 1. For example, the
last digit of the number x = 12,345 is 5 and the 4th last digit is 2.

For simplicity of notation, we will use dk(x) instead of d(b)
k (x) for the kth last digit

and d2,1(x) instead of d(b·b)
1 (x) for the combination of the second last and the last digit

throughout this paper.

1 For the purpose of generality, B denotes a finite set of numbers that, with some addition operation +,
forms a circulant finite group.
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284 S. Dlugosz, U. Müller-Funk

3 Uniform distribution of the last digits

At first, we show that a block of digits becomes independent and uniformly distributed
in the limit.

Theorem 1 Let X > 0 be a random attribute with distribution function F and con-
tinuous density f = F ′. Then, for all � > 1 and 1 ≤ kr < b (1 ≤ r ≤ �):

P (mn(X) = k1, . . . , mn+l−1(X) = k�) →n→∞ b−l

The result can be supplemented in various ways. Assuming that f is Lipschitzian, one
can establish the rate of convergence O(n−1), for instance.

In real world problems, the convergence shown in Theorem 1 is appropriate only
for very special cases as the number of digits, i.e., the ‘size’ of the number has to be
very large (or very precise). Therefore, for numbers with a limited number of digit
positions another set of criteria is needed to decide whether the last digits obey the
discrete uniform distribution. Many financial figures are results of a ‘summation’ pro-
cess, i.e., they are given by

∑
i xi with xi ∈ N, e.g., turnover. This basic idea leads to

another theorem that states that the last digit is uniformly distributed on B with the
help of Markov chains (Kemeny and Snell 1976). We will derive a set of criteria that
justifies the uniform distribution for the last digits and can be checked easily.

In order to outline the idea behind this approach, let Xi be a sequence of i.i.d.
random variables on N. Interpreted in an economic context, these random variables
represent selling positions of a certain period of time. With respect to addition, the
last digits form a finite Abelian group on B (think of B = {0, . . . , 9} in most cases).

Each addition operation can be seen as a transition on a finite Markov chain with
the following transition matrix: Let vector v ∈ [0, 1]z describe the probabilities vz =
P (d1(Xi ) = z). The vector v(n) ∈ [0, 1]b is given by v

(n)
z = P

(
d1(

∑n
i=1 Xi ) = z

)
.

Let

A =

⎛

⎜⎜⎜⎜⎜⎝

v0 vb−1 vb−2 · · · v1
v1 v0 vb−1 · · · v2
...

. . .
. . .

. . .
...

vb−2 · · · v1 v0 vb−1
vb−1 vb−2 · · · v1 v0

⎞

⎟⎟⎟⎟⎟⎠
(1)

be the transition probability matrix describing the transition of the last digit performed
by a single addition. A is double-stochastic, i.e., vz ≥ 0 ∀z and

∑
z vz = 1.

As the Xi are i.i.d., the Markov property is given. Now, the probabilities

P

(
d1

(
n−1∑

i=1

Xi + Xn

)
= z

)

can be calculated via:

v(n) = Av(n−1)
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The value of the last digit 285

Furthermore, matrix A is a double-stochastic circulant matrix, i.e., a special form of
a Toeplitz matrix (Gray 2006).

Obviously, the last digits of many numbers in financial application, which are results
of a longer summation process, are a result of this finite homogeneous Markov chain.
To show the ergodicity of this Markov chain, we have to prove that it is irreducible
and aperiodic (Kemeny and Snell 1976). The stationary distribution of this Markov
chain would be the discrete uniform distribution, because A is double-stochastic.

Lemma 1 Let A be as in (1). Furthermore, put I = {i ∈ B : vi > 0}. A is irreducible
iff there exists i ∈ I with gcd(i, b) = 1 or (alternatively) i, j ∈ I, i 	= j with gcd(i + j
mod b, b) = 1.

Aperiodicity cannot be shown that easy and we have to do some more work.

Lemma 2 The structure of A is given by (1).

a) A is aperiodic if v0 > 0.
b) Let I = {i ∈ B : vi > 0}. If ∃i, j ∈ I, ı 	= j , gcd(|i − j |, b) = 1, then A is

aperiodic.

Unfortunately, Lemma 2 does not give us any information on aperiodicity in other
cases than mentioned. To turn argumentation around, the following Lemma 3 shows
us some cases, where the Markov chain with transition matrix A is periodic.

Lemma 3 Let A be as in (1). Furthermore, put I = {i ∈ B : vi > 0}. Let P =
{p1, . . . , p|P|} be (the pairwise different) prime divisors of b. If ∀i, j ∈ I : ∏P

�=1 p f�
� |

| j − i | with p� ∈ P and N � f� ≤ e� ∀� and if
∏P

�=1 p f�
� � i and

∏P
�=1 p f�

� � j , then
A is periodic.

The following fact follows directly from Lemmas 1, 2 and 3.

Theorem 2 Let Xi be a sequence of i.i.d. random variables on N and i ∈ {0, . . . , n}
with n ∈ N.

If

(1) we have
– P (d1(Xi ) = z) 	= 0 for any z ∈ B with gcd(z, b) = 1 or
– P (d1(Xi ) = z1) 	= 0 	= P (d1(Xi ) = z2) for some z1, z2 ∈ B and z1 	= z2

with gcd(z1 + z2 mod b, b) = 1
(2) and

– P (d1(Xi ) = 0) 	= 0 or
– P (d1(Xi ) = z1) 	= 0 and P (d1(Xi ) = z2) 	= 0 for z1, z2 ∈ B with z1 	= z2

and gcd(|z1 − z2|, b) = 1,
then:

P

(
d1

(
n∑

i=1

Xi

)
= z

)
→n→∞ b−1

From a practical perspective, the number of transitions needed to come close to the
stationary distribution is very important (e.g., if there are only a few sale positions for
some days of the year). As for that aspect we state:
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Theorem 3 Let A be ergodic and let

(λ0, λ1, . . . , λb−1) =
(

1,
∑

z

vze− 2π i z
b , . . . ,

∑

z

vze− 2(b−1)π i z
b

)

denote the eigenvalues of A and pn(z) the zth entry of the vector pn = An(1, 0,

. . . , 0)t ∈ R
b.

Then, it is true that:

1

b

∑

z

(
pn(z) − 1

b

)2

= 1

b2

b−1∑

m=1

|λm |2n ≤ b − 1

b2 (λ∗)n

where λ∗ < 1 denotes the second largest eigenvalue of A (the largest is λ0 = 1).

Note, that for the convergence result, A has not necessarily to be known exactly. All
we have to ensure is that some entries of A are positive. Regarding the speed of con-
vergence, however, we have to calculate the eigenvalues of A and thus have to know
the size of its entries. If these data are missing, we can often estimate them using some
additional data (e.g., using the data from competitors on fractions of certain products).

In a more general setting, we might not only be interested in the last digit, but also
in the second, third, … last one. Especially in retail, we often have psychologically
motivated prices ending with 9. This results in a periodic Markov chain. On the other
hand, there might be (e.g., for simplicity of cashing) a tendency to use last digits
like 0 and 5. This causes a reducible Markov chain. In these cases the Markov chain
describing the last digits is not ergodic. Therefore, the second or even third last digit is
used for analysis. This is why we extend the analysis to the second last digit. Results
are also true for third, forth etc., last digits and the necessary proofs follow the same
ideas.

In general, ergodicity of the Markov chain for the last digits implies ergodicity of
the Markov chain for the two last digits:

Theorem 4 Assume the validity of Theorem 2, for the last digits, i.e., on B. Then it
also holds for the last two digits (combined), i.e., on B × B.

Let us first turn to the case of a reducible Markov chain on B, e.g., if there are only
‘psychologically-motivated’ prices.

Theorem 5 The structure of A1 is given by (1) for B and the structure of A2 is given
by (1) for B2. If A1 is reducible and if there is a z ∈ B\{0} with P (d1(X) = z) > 0
and if A2 is aperiodic, then it holds for the second last digit of the sum

∑
i Xi :

P

(
d2

(
n∑

i=1

Xi

)
= z

)
→n→∞ b−1 .

In the case of a periodic Markov chain on B we cannot use such a simple argument
due to the fact that A1 is periodic iff A2 is periodic. Nevertheless, we can show the
following result for a periodic Markov chain on A1:
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Theorem 6 The structure of A1 is given by (1) for B and the structure of A2 is given
by (1) for B × B. If A1 is periodic with period p ∈ P = {p : p|b} (cf. 3) and if A2 is
irreducible, we get

P

(
d2

(
n∑

i=1

Xi

)
= z

)
→n→∞ b−1.

Theorems 5 and 6 can be combined to show that the second last digits are uniformly
distributed in more complex cases.

Furthermore, we are in need of a theorem analogue to Theorem 3 that complements
Theorems 4, 5 and 6. First we define:

Definition 1 (Projection matrix from B2 to B (second last digit)) Let

Pb = diag(1b, . . . , 1b︸ ︷︷ ︸
b times

) ∈ R
b×b2

with 1b = (1, . . . , 1︸ ︷︷ ︸
b times

) .

Pb is the projection matrix, which maps each stochastic vector from R
b2

to a stochastic
vector on R

b, whereby b entries are aggregated to a single entry.

Now, we can state:

Theorem 7 Let A2 ∈ R
b2×b2

be a double-stochastic, ergodic, circulant transition
matrix and z ∈ B.

With P = Pb as in Definition 1 holds:

b ·
∣∣∣∣∣
∑

z

(Ppn)(z) − 1

b

∣∣∣∣∣

2

≤
∑

z

⎛

⎝ 1

b2

b2−1∑

m=1

|(Pvm)(z)||(λm)n|
⎞

⎠
2

,

with λ0, . . . , λb2−1 denote the b2 eigenvalues of A2.

4 Conclusion

Assume that we have information on prices and daily turnovers of a restaurant. Let
Xi j ∈ N be the turnover associated with the i-th customer on day j (measured in the
smallest unit available, i.e., pence, cent etc.). Then X j = ∑

i Xi j represents the daily
turnover. We are interested in the distribution of the last digits of X j and we want to
test whether this distribution is irregular or not. Under the conditions of Theorem 2,
the ‘regular’ last distribution of X j is the discrete uniform distribution in the limit.
Theorem 3 may help us to decide, whether X j is close enough to this asymptotic
result in order to apply the χ2-test on uniform distribution of the last digits. In the case
of psychologically motivated prices, we can make use of the Theorems 5, 6 and 7 to
obtain similar results for the second, third etc. last digit. This approach has successfully
been applied to data from ice cream parlors.
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288 S. Dlugosz, U. Müller-Funk

We conclude that fraud detection is very well possible on the basis of formal pecu-
liarities, provided the structure of the data is appropriately taken into account.

5 Technicalities

Proof of Theorem 1 For the sake of (notational) convenience we only prove the case
� = 1—the argument carries over to higher dimensions. For i ∈Z, 1 ≤ j1 < b, 0 ≤ k,

jr < b (r > 2) put

– tn(i, j) = ∑n
r=1 jr bi−r+1

– In(i, j, k) = [tn(i, j) + kbi−n, tn(i, j) + (k + 1)bi−n[
Accordingly,

P (mn+1(X) = k) =
∑

i∈Z

b−1∑

j1=1

b−1∑

j2=0

· · ·
b−1∑

jn=0

∫

In(i, j,k)

f (t)dt

Choose ε > 0. For some q > 1:

– P (e(X) > q) = P(X ≥ bq+1) < ε

– P (e(X) < −q) = P(X ≤ b−q) < ε

For n sufficiently large, moreover,

∣∣∣ f (t) − f
(

tn(i, j) + kbi−n
)∣∣∣ <

ε

2q

independently of i, j . Note, that the points tn(i, j) form a mesh of size bi−n+1 and
that tn(i, j) + kbi−n can be perceived as a set of supporting points for a Riemannian
sum—for every fixed −q ≤ i ≤ q. Now

–
∣∣∣
∑b−1

j1=1
∑b−1

j2=0 · · · ∑b−1
jn=0

∫
In(i, j,k)

−bi−n ∑b−1
j1=1

∑b−1
j2=0

· · · ∑b−1
jn=0 f

(
tn(i, j) + kbi−n

)∣∣∣ < ε

– bi−n+1 ∑b−1
j1=1

∑b−1
j2=0 · · · ∑b−1

jn=0 f
(
tn(i, j) + kbi−n

) → ∫ bi+1

bi f (t)dt

As a consequence,

limn

∣∣∣∣∣∣∣
P (mn+1(X) = k) − 1

b

bq+1∫

b−q

f (t)dt

∣∣∣∣∣∣∣
< 3ε

The assertion follows from q → ∞. �
Proof of Lemma 1 I 	= ∅ as A is double-stochastic. The second case is covered by
the first using A2 instead of A, and the proof of the first case is as follows:
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‘⇒’ Let I = {i} and gcd(i, b) = k > 1. Then we have i > 1 and only the states n · k
mod b with n ∈ {0, . . . , b

k −1} are reachable. The state 1 could be reduced from
the Markov chain.

‘⇐’ ∃i ∈ I : gcd(i, b) = 1. Then we have n · i mod b 	= 0 for all n ∈ B\{0}
and for A2 we have v2i mod b > 0, i.e., one more reachable state. Mathematical
induction ending at b · i mod b = 0 (after b steps) supports the statement. �

Proof of Lemma 2 W.l.o.g. let i − j = k. As b · j mod b = 0 we have (b− i) · j + j · i
mod b = 0. This implies that the minimal period is equal or smaller than gcd(b, b−k).
With gcd(k, b) = 1 we get gcd(b, b − k) = 1. If there is no common divisor of b and
k, it follows that b and b − k, 0 < k < b cannot have a common divisor. �
Proof of Lemma 3 W.l.o.g. let j > i and f� such that j = i + ∏P

�=1 p f�
� . Obviously

it is true that b = ∏P
�=1 p f�

� · x and let k, � ∈ N0 such that:

k · i + l ·
(

i +
P∏

�=1

p f�
�

)
= m · b

⇔ (k + l) · i = m ·
P∏

�=1

p f�
� · x − l ·

P∏

�=1

p f�
� = (m · x − l) ·

P∏

�=1

p f�
�

The right hand side
∏P

�=1 p f�
� is divisible, and thus

∏P
�=1 p f�

� | (k + l) holds, because

of assuming
∏P

�=1 p f�
� � i . Therefore, we have for all do = ∏P

�=1 p f�
� for all 0. �

Proof of Theorem 3 The eigenvalues are defined due to the fact, that A is a Toeplitz
matrix (Gray 2006). With Rosenthal (1995) (Fact 3, p. 391) and that in his notation
am = 1

b and because the eigenvectors form an orthonormal basis. �
Proof of Theorem 4 Using the notations from Theorem 2 applied to B × B, it is trivial,
that

– gcd(z, b) = 1 → gcd(z, b2) = 1
because |B × B| = b2 and the divisors of b and b2 are the same.

– gcd(z1 + z2 mod b, b) = 1 → gcd(z1 + z2 mod b2, b2) = 1
for the same reason.

– gcd(|z1 − z2|, b) = 1 → gcd(|z1 − z2|, b2) = 1
ditto. �

Proof of Theorem 5 The Markov chain based on matrix A2 is not ergodic, because it is
reducible. Nevertheless, the state 00 can be reached because there is a z ∈ B1\{0} with
P (d1(X) = z) > 0 and �i∈I gcd(i, b) = 1, i.e., ∃ j∈Ni · j mod b = 0 and the starting
state in the considered case here is 00, obviously. We delete the unreachable states from
the Markov chain and this reduced Markov chain is ergodic. P (d1(X)|d2(X) = z) =
P (d1(X)) gives the result. �
Proof of Theorem 6 Periodicity of A2 follows from the periodicity of A1. Now, we
can divide the state space B × B into subspaces S0 to Sp−1, with the property that
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290 S. Dlugosz, U. Müller-Funk

P(Si |S j ) = 1 if i = ( j + 1) mod (m + 1) and zero otherwise. A Markov chain
living on one of the state spaces S0 to Sp−1 is ergodic and the corresponding transition
matrices are double-stochastic. Furthermore, these subspaces S0, Sp−1 are of the same
size and thus, the stationary distributions are the same. As the elements of B are also
equally ‘distributed’ over the subspaces, P(Si ) = P(S j ) for all i, j and we have for
any z ∈ S j for all j :

P

(
d2,1

(
n∑

i=1

Xi

)
= z

)
→n→∞ pb−1.

�
Proof of Theorem 7, c.f. Fact 3, p. 391f. of Rosenthal (1995) Because eigenvalues
and -vectors exist for circulant matrices and because A is ergodic and doubly sto-
chastic, we can state for the initial distribution of the Markov chain π0:

π0 = 1

b2

b2−1∑

m=0

vm

With Ppn = Pπ0 An
2, vm A2 = λvm and λ0 = 1 we have:

Ppn = 1

b2

⎛

⎝Pv0 +
b2−1∑

m=1

Pvm(λm)n

⎞

⎠

Because λ∗ < 1 and with a similar argument to Fact 3 of Rosenthal (1995) follows:

(Ppn)(z) − 1

b
= 1

b2

b2−1∑

m=1

(Pvm)(z)(λm)n

Apply the Triangle inequality and sum over z. �
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